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1. Introduction:

Stokes (1846) showed that a sloping beach can act as a wave

guido which allows gravity waves to travel along shore with an ampli-

tude decreasing exponentially with a distance from the shore. Since

then, several authors including Ursell (1952), Greenspan (1956) and

Munk and others (1956) discussed long or short gravity waves on a

sloping beach of a homogeneous water either from a mathematical point

of view or from application to geophysical problems.

Kelvin (1879) treated a problem of long waves propagating

along a straight coast in a rotating sea and found that the amplitude

decreases exponentially from the coast to the left hand side of the

direction of propagation in the northern hemisphere. Energy of such

waves which are called Kelvin waves, therefore, is seemingly trapped

by the coast.

The edge waves over a sloping beach in a rotating sea of

homogeneous water was treated by Reid (1958) and Kajiura (1958). They

showed that in this system there are two inertio-gravitational waves

travelling in opposite directions and one quasi-geostrophic wave.

However, density stratification of the water as well as a

beach slope becomes important for problems concerning response of the

marginal sea to atmospheric disturbances and for problems concerning

internal waves near the coast. In order to represent such stratifica-

tion in a way which is feasible to mathematical treatment and yet,

keeps essential dynamical feature of the system, a two-layer model of
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the thearmocline, consisting of two fluids of different densities is
adopted. Deviation of modes of wave motion in a two-layer model from
those in a continuous density was discussed by Eckert (1960) in a more

or less general way.

Essential features of motion near the coast with a length
scale of the width of a continental shelf and with time scales longer

than a few hours can be represented by a mathematical model for waves
in a two-layered, rotating sea bounded by a straight coast and with

a variable depth. There are two types of bottom topography which
renders mathematical analysis feasible and yet simulates an area close

to the continent.

One type is a continental shelf with a uniform or variable
depth connecting with the open sea with a uniform depth as treated by

Ichiye (1963). The other type of simple bottom topography is a depth

increasing linearly from the coast. In a two-layered sea, there must
be longshore geostrophic currents due to pressure gradients if the

interface as well as the surface intersects the bottom at the coast.

This study has treated such a model mathematically. In

order to simplify the analysis, it is assumed that geostrophic currents
in the upper and lower layers have uniform velocities owing to the

surface elevation increasing linearly from the coast. Although such

an infinite uprise of the sea level seems to be unrealistic, the
waves considered have amplitudes significant only near the coast and

the simplified model may be justified if interpretation of mathema-
tical results is proper. Slopes of the surface and the interface are

assumed so small that the approximation of hydrostatic pressure is

valid as shown by Eckst (1951).



3

2. Fundamental Equations:
The x- and y- axes are taken on the level surface perpendi-

cular and parallel to the coast-line, respectively, and the s-axis
is taken vertically downwards, as shown in Fig. 1.

U0

Fig. 1 Schemetic diagrams of coordinate system (A) and a
vertical section (B).

It is assumed that densities of water in upper and lower
lnye-rs are uniform and their difference is small. The basic currents
are goostrophic and their velocities are constant in cach layer. The

waves are considered to be perturbations to such basic currents. The
non-linear inertia terms are neglected with assumptions that the
vertical velocity and amplitudes of the waves are very small. The
vertically integrated, linearized equations of motion without dis-
turbing forces and equations of continuity are respectively as
follows:

TD# j ] (1)

and IIJ ?4 ,(2)

where * .. f ,for

I I

for
and
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In these equations suffices 1 and 2 correspond to the
quantities in the upper and lower layer, respectively; Mil N i are

horizontal mass transports respectively along the x- and y- axes,

7i, 6 the basic current assumed to be geostrophic, ýj the density,
h (Wsjx) the thickness of the layer; ý 1 and ý 2 are respectively

the depression of the surface and the interface from the equilibrium
levels, ' (- -?2- P 1) density difference, j the Coriolis parameter,
Sthe gravitational acceleration, and V7 horizontal gradient operator.

The assumption of geostrophic balance for the basic current

leads to

72-=v7 (3)
P + dx

Assuming that horizontal mass transports and displacements

of the surface and the interface are proportional to exp{L(&v -Gr')j
the equntions of motions (1) becomes a system of linear equations for

and N with constant coefficients. The solutions of HM and N i
.I.n .- :,-i cf are given by:

and

where A 7j -n wc

Substituting M and N into the equation of continuity (2), we can
get equations for t and 7 :

+ (it 0 (6)
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an4 S4 ~@ J-2 7-3 =

where f 2-O =d tj Idz

ard _,•d - dz Az

Elimination of ý2 from equations (6) and (7) yields the equation

for '1:

where A -

6 f t (02-A,1 AiAf I'dLa 2 (10)

a-, 2 s•

arid /

The equation (8) can be separated into two independent
Laguerre differential equations:

(V - KO ) , 0 (11)
or ( - Kz) ý 0, (12)

where Ki a t ?-4-b (13)

It is seen that a 2 - 4b 0 for mall .

In order that the solutions of equations (11) and (12)
may be finite both at the coast and at the infinite distance, the Kj
must equal to -(n + 1)k, where n is an integer. These conditions
yield the relation between ý land ý2 and the frequency equation,
respectively:
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2 A + (14)

and ( 2 7H)21 + t z*IL&() +

is (-W)l (15a)

The frequency equation (15a) can be reduced into

- )I (15b)= O-J )C, 2 ( 1--4/, 2 )1 - ••

In these equations following notations are used:

and / f

The equation (15b) can be written in the polynomial about w. The
coeiiicieuts of different powers of w are shown in the following
Table 1, in which the dimensionless quantities, E', and rare
defined by L k/ Vk C( T=9+S

71f S,
Equation (3) yields ('tF-)w = ( V, -Vs,~ (,;itS.) 1

Therefore (I* ') V•., is always positive, no matter in what
direction the current in upper and lower layers flow. Values of
for different values of V1 and wave length are shown in Table II,

fox 10f4 (sicc).
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Table I Frequency Equations

V ~~Coef j CLce 71tS

0U' -3 (/-E)&" -0X/)• 4 T-,X3-) tE-(E 3)"K -

W3 - (C. I. ( I") t (/-.I)

Table II Nondimensional wave number c'=V*/ corresponding
to a given way. length L (km) and velocity V1 (M/sec),
where f - 10 'sec-1.

10 50 100 500 1000 5000 AX
1 6.283 1.257 0.628 0.126 0.063 0.013

0.8 5.026 1.066 0.503 0.101 0.050 0.010

0.5 3.142 0.628 0.314 0.063 0.031 0.006
0.2 1.257 0.251 0.126 0.025 0.013 0.003
0.1 0.628 0.126 0,063 0,013 0,006 0,001
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3. The waves for n - 0
When n - 0, the polynomial (15b) can be factorized as follows

-t- i- XLJ- Xcu*E f!Xc- W X'v~A~))(16)

It is seen at once that equation (16) has two roots:

Cv= (17)

= (18)

The root (17) or (18) makes the denominator f!._1 in equations (4)
amd (5) vanish for j - 1 or 2, respectively. Therefore, equations

( 4) and (5) yield e

in •shich the suffix j equals to 1 or 2, corresponding to the root

(1*1) or (18), respectively.

Substituting ?i into either (6) or (7), it is found that

and are proportional to e - • The mass transport
Hor H2 respectively for the root (17) or (18) can be derived from

one of equations of motion (1) and equations of continuity (2).

The boundary condition that NH thus determined should vanish at

the coast and be finite at an infinite distance leads to a relation

which determines the values of k.

One such corresponding to the root (17) is given by

Since w1 - -1 and w2 is linear with k, equation (19) is a cubic

equation about k. This equation yields the roots when & is very
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small, f

(- -0 ( (20a)

+'0 ) (20b)

aod7 ~c$ (20c)

Relation (20a) is equal to 2f'40'5,-f.T) when

S- 0 and V1 - V2 - 0, as obtained by Reid (1958).

The waves corresponds to be roots (17) and (18) are degen-

erate cases of other modes of waves as in case of a uniform density.
Since these waves are possible only for discrete wave numbers, they
cannot be excited by local atmospheric disturbances of arbitrary
dimensions.

Other four roots of w in equation (16) are determined from

the following biquadratic equation with w:

0 11

(22)
As seen from Table II, -A"<< -I for the wave length* longer

than several kilometers and reasonable values of V1 because / lo
In such a range of A' roots of equation (22) can be expressed
approximately with algebraic relations of ?4.

First, only terms with S-1 are kept for the same
powers of j j . since 9 << . Fuxther, if *'<</ , powers of

•' higher than the first in the coefficients of .2 and w can be
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neglected. The left hand side of equation (22) can be written as

C U (e u ) -1 I C U -f I+ 1 j C I - I E S r A '1( 3
f ~ (23)- (1+1 )1 (',•-z +," (/+ Exr- 1 ),' S " = 0

If the last two terms of equation (23) are neglected, the first

approximation of four roots of (23) is given by:

WL !:1- 0 /ew / 40~ 1% (24a) (24b)

an (V !z' + + 0 + E + (25a) (25b)

In relations (25a) and (25b), terms without a factor &-' are

neglected. The followi~ng second approximations for (24a) and (24b)

are determ~ined from (22) to the order of ' and • /, respectively.

C -,-" +(r-*U. .' (26a)

< CI+ "1•i f-'I (26b)

The term of ' in (26a) becomes important when F= o • The

roots (26a) and (26b) yield respectively following phase velocities:

C V2 VV+ (27a)

S) (27b)

The depression ý, of the interface corresponding to (26a)

(26b) are respectively given by

(28a)

W- (28b)



Since equations (28a) and (28b) indicate that displacements of the

interface are much larger than and reserve in direction to those of

the free surface, the waves corresponding to roots (26a) and (26b) are

interpreted as the baroclinic mode. The frequency corresponding to

(26a) is very small and the mass * transports which are obtained by

substituting (26a) into (4) and (A) are quasigeostrophic or geostrophic

to the order of magnitude of * Since the frequency for the root

(26b) almost equals to that of inertial oscillations, waves corres-

ponding to this root may be called inertiogravitational waves. The

phase velocity (27a) of quasigeostrophic waves shows that the waves

are carried by the current of the lower layer. When V2 - 0, they

propagate to the positive y-direction. When V O0 they may propagate

to the negative y-direction for smaller Ct/ but to the positive

y-direction for larger # / in a range -of IV satisfying &kl< / . The

value of at which such change in propagation direction occurs is

given by (r(-I ti'Y)which lies in the range of *' considered if

is sufficiently small. Inertiogravitational waves are carried by

the current of the upper layer, as seen from equation (27a).

Dynamical properties of the waves corresponding to (25)
may be understood when we consider a range of #,/satisfying 4/<< S)•.

Under this condition, the roots (25) can be
! expressed by

(29a)

Cvj (29b)

The displacement of the interface corresponding to (29a) and (29b)

is given by:

ýz (30)
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which indicates that the waves are of barotropic mode. The same

argunent as for the waves corresponding to (26a) and (26b) can be

applied to the waves of barotropic mode and waves for (29a) or (29b)

may be defined as quasi-geostrophic or inertiogravitational waves,

respectively. .4

When & It, I• << f4  << (6 - equation (22)

can be approximately separated into two quadratic equations:

CO-2 11+ O'-FA" C - (1+1)1-k' =0(31)

fco- {2(f-I-~)~+'~ ~<[jU t1'?A--fa+ 2'"&C=O (32)

The roots of (32) represent the waves with high frequencies which

bocome waves of barotropic mode corresponding to the roots (29a) and

(29b) as *'decreases to the order less than 6 . The waves corres-

ponding to the roots of equation (3') have lower frequencies than

those for (32). They become waves of baroclinic mode corresponding

to the roots (28a) and (28b) as A/decreases.

The four roots of (22) for a range of from 10.4 to 10

are numerically computed by taking following constants.

The curves of w are plotted against in fig. 2a, b. The values .-0

and oo of ; corresponds to the cases of no current in the lower and

upper layer, respectively. Since Cvanishes for " ..", i'is replaced

by kV/&= 7 2 f') in fig. 2b. It is seen that general features of

four curves of V are very similar for different values of e except

those of quasigeost:ophic waves of baroclinic mode. Since the prom-

inent terms in most approximate formulas for w include (,÷£)

as a combination, the curves of v are almost the same for negative



13

values of Of)as for positive values 'f /I)/is taken as an argument.
In fig. 3 the ratio I • / 4,J for four different roots of

the biquadratic equation in (16) are plotted against Cjfor a case
of Ex 0 . These ratios are almost unchanged in a range of

considered. Althodh explicit formulas of !z indicating separation
of barotropic end baroclinic modes such as (28) and (30) are derived

only for a certain range of •' such separation is almost complete
in the whole range of •'. There seems to be no important interaction
between barotropic and baroclinic modes.

Since the waves of barotropic mode are similar to those
treated by Reid (1958)9 the approximate formulas of the roots of

this mode can be compared with his results. From the definition of

, A', rand o ,we have

-f & (34)

I2 we put t =sts2  ,the roots expressed by (25) become the same
as those of equations (35) and (36) in Reid's (1958) paper. (Note
that his notation w is equivalent to -d or-fuw in our notation.)
As A Ior j increases, these roots can be approximately expressed by
roots of equation (31), which are equivalent to those of equation

(40) in Reid's paper.
Since is positive from relation (34) and ŽI >

from the definition, the approximate formulas (23), (31) and (33)

always yield real values of v. This situation indicates that the
waves for n - 0 are stable for a range of wave numbers satisfying
the condition that o < j « ' ,-' . This range includes waves
whose wave lengths range from thousands to several kilometers, for
ordinary magnitudes of S (-- 10"3) and V1 ( - /i11s). Such per-

sistence of stability in the range of wave lengths is different from
occurrence of long unstable waves which are predicted in a mathema-
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SDA~ (04 *o)

t =0

Fig. 2a.--Relative frequencie. W1 A /'f versus
for 0O 0.5 and 1.
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- -

- - -(A)

Fig. 2b.--Relative frequencies Cwjfqag-v,()/ 5  versuarsj%.iV/
for o
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tical model. of cyclones as waves on an inclined boundary of two air
masses in the atmosphere (Godske and others, 1957). This difference
might certainly be due to the kinematic constraints imposed by the
bottom configuration, the free surface, and the coast in the present

model, though a real reason must be yet to be found in more elaborate
study. (See Appendix A)

/00

/ 3uf0

versu n,• •o - 0/d•
F•lin. 3.-I</- . 0 ,and.,, -m-0
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4. The waves for f. , 1
When " i much smaller than S(27f+/)"-, equation

(15b) yields approximate relations for w . Approximation for

three roots in a low frequency range is obtained by equating to zero
respectively the linear and quadratic part about wJ in equation
(15b) v in which only the zeroth, first and second powers of i / are
retained respectively in the coefficient of the second, first and

zeroth power of W) in the polynomial shown in Table 1. These roots
are:

+o (- 71*0 (35a)

As the roots (26a) and (26) for 7t - 0, these roots
represent motion of baroclinic mode which is characterized by the
valu•o of • proportional to c S,. Substitution of (35a) and (35b)
into (4) and (5) as well as the magnitude of characteristic fre-
quencies confirm that the roots (35a) and (35b) correspond res-
pectively to quasigeostrophic (,f w 6) and inertio-gravitational
waves ( 2 - 4 and 5), where I denotes the mode of waves for different
roots of (15b) with j - I to 3 and 4 to 6 corresponding to barotropic

and baroclinic mode, respectively.
The three roots of (15b) in a high frequency range is

determined from a cubic equation:

-Lotsv(36)

If the term of c..? is neglected, this equation becomes the osm as

equation (30) in the paper of Reid (1958) by putting S = " 5-t 9.
1
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Therefore, these roots correspond to the motion of barotropic mode.

The approximate formulas for three roots of (36) can be written as:

c . _ -, (37a)

CU-h it I :t(Itor s, (2flhiot II}k '0 (37b)

with the condition C'< 4 . The sane argument as applied to the

roots (35a) and (35b) indicates that the roots (37a) and (37b) cor-

respond to qussigeostrophic ( I- 3) and inertiogravitational waves

(L- 1 and 2), respectively.

In a range of satisfying the condition that
&•(2nt1)• • < •'(2 & 77-) equation (15b) can be separated

•to a q'txdratic and biquadratic equation of w . The quadratic

et,uation is

If S is substituted for 5, tS. and eis used instead of A., this

equation becomes:

W2- (2ntO*5) g 5 (38b)

Therefore ths roots of (38b) represent the gravitational waves of

barotropic (1-1 and ) similar to Stokes' edge waves.

The biquadratic equation of W is obtained by equating

to zero the sum of all the terms with a factor V- in Table 1. If

S (21*I )'« << -V/e,< (.7"it+ )- this equation has the

follo•-gng four roots:

(znH) 10/ £V)T-. I (39a)

to~- +-i Q(I) (39b)

- (390)
S• 1*
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The roots given by (39a) and (39b) correspond respectively

to (35a) and (35b) and represent quasigeostrophic (L - 6) and nsre-

tiogravitational (1 -4 and 5) waves of baroclinic mode. The root

(39c) represents quasigeostrophic waves of barotropic mode (I - 3)

for -? > f2 (iwtT' 7 5Y- in Reid's (1958) paper.

As A 'approaches to and exceed ('a÷+)-/ , roots of the
biquadratic equation are no more adequately expressed by approximate

formulas (39a) to (39c). The formulas for such roots cannot be

determined as simple algebraic relations of 4 .

In figure 4, the curves of six roots of equation (15b) with

n - 1 are plotted for ' . A range of and constants & and

are the sae as for the curves of figure 2 of n - 0. The curves of

roots of barotropic mode have features similar to those of Reid's

(1.958) paper, indicating that there is little interaction between

barotropic and baroclinic modes in a range of Ad considered. Also,
nu.arical calculation as well as approximate formulas for W. indicate

that the roots of equation (15b) are real for -,n and the wwes

are stable in this range of .
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I/

1-0

Fig. 4.--Ralative frequencies . -e(W)/- versus
"for 0-o.
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5. Group velocity.
The group velocity £ (C) of the waves corres-

ponding to the root COj, (W) of equation (l5b) is given by

---- (40)

in which i is the frequency corresponding to Ljj and the

suffices I( - 1 to 6) and n (-0,1,2...) are the mode and the order

of the waves. if R(cv, •.) represents the frequency equation whose

coefficients of powers of 4O are listed in Table 1, the group
velocity (40) is expressed by:

c~A/F* (41)

General features of group velocity of waves of different
modes may be seen from the slope of the curve of CaJ1A (•r) plotted

against k" as well as approximate formulas for wt. (9) .
Trends of roots copf (k') of barotropic mode as functions of

r/ are almost similar to those discussed by Reid (1958) in a
rarge of it considered in this study. Thus, the group velocities
of the barotropic modes have similar features to those of his theory.

In order to discuss the group velocities of baroclinic

mode for n - 0, approximate formulas of w are determined from
eqluation (32) for two ranges of '/ . In a range 1 >;P

ro~ots of (32) are given by

- (42b)

I 1 (-•-")• 4b
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In a range S">>W >>I these roots are expressed by:

"+ -+( •(43a) (43b)

where =

The formula with minus or plus sign before the double sign is denoted
by (43a) or (43b), respectively. Approximate formulas of c•)in the

quasigeostrophic waves of baroclinic mode are expressed by (26a) (42a)

and (43a) in respective ranges of e' . Those of inertiogravita-
tional wave are given by (26a), (42b) and (43b).

The group velocity as well as the phase velocity for the

quasigeostrophic waves is smaller than corresponding velocities of

the inertiogravitational waves in a range of A considered as seen

from relations (26), (42) and (43). If ; is finite and of order of

magnitudes less than unity, the group velocity of the quasigeostrophic

waves is almost the same as the phase velocity which equals nearly to

2 . velocity of the permanent flow in the lower layer in a

rarge ,'; <« I . Therefore, with such a condition these
waves are almost non-dispersive. If F -to , in a range

9'<<l the group velocity of quasigeostrophic waves are twice

the phase velocity which is the order of magnitude of C71

In a range S 7k! >>I group velocity is almost the same as the

phase velocity for any values of 6 .
The group velocity of the inertiogravity waves equals

approximately to .2 P in a range . < I , and
to F A/ in a range *<<P'<<«-' ,if >>)I and

S<< . It is much smaller in a range fe<< than the
phase velocity which is nearly equal to V /, ( _ • -). Therefore,

these waves are strongly dispersive in such a range of 4.
They become less dL spersive in a range (<< '<< • " as in the

quasigeostrophic waves.
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Analogous discussions may be applied to the group velocity

of the waves of order higher than zeroth order. The group velocity

of the second inertiogravity waves corresponding to the root with the

lower sign of (35b) and (39b) is negative as the phase velocity

is . although the magnitude of the group

velocity is much smaller than -ýhe phase velocity in a range

k " < / . In this range of 4" . therefore, these waves -are
highly dispersive as the first inertiogravitational waves for roots

with the upper sign of (35b) and (39b).
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6. Normal modes

Arbitrary waves in this systen can be expressed as a sun
of the waves of normal modes of I - 1 to 6 for all order 1Z from 0
to infinity, because orthogonal relationships among normal m6de

functions are valid as proved in Appendix B. In order to discuss the

waves generated by an initial mound of the free surface or by wind

stresses or atmospheric pressure, the initial surface elevation or
forcing functions of wind stresses or atmospheric pressure must be

expressed by a sum of normal mode functions.

The orthongonal conditions for the present system are
expressed as follows (see Appendix B for derivation):

r2 a1-1 0 4t-, p ( X(4 CA) )

in which Mi,no , and i'il denote the normal
ftmctlons of mass transport in x- and y- direction and displacement
(downwards) of the upper face, respectively; the suffices 1 and 2

for i indicate respectively the upper and lower layer, the suffices

7l and X (1 to 6) and I and p (all positive integers) represent

respectively the mode and the order of the normal mode functions and
the asterisk denotes the conjugate complex. In this equation, the

first and the second three terms in the integral sign represent the

sum of kinetic and potential energy of the flow in the upper and
lower layer, respectively and tle last term represent the effect of

interaction of the upper and lower layer.

The quantities C "O(C') can be computed by substituting
the normal mode functions for x.= v and into the left hand side
of equation (44). However, the values of can be estimated

without resorting to a complicated calculation. As discussed in
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Sections 3 and 4, the normal mode functions are almost completely
separated into barotropic and baroclinic mode in a range of */ much
less than uninity or in a range of wave lengths from several to
several thousands kilometers. Therefore, for the barotropic mode,
the normal functions of the lower layer )'V• , A/: and can be
expressed approximately by 

an

S(45a)

In this case the mass transports in the whole depth become

M,~~t4  10A ,t 2 (45b)

Substitution of (45a) into the left hand side of (44) leads to:

The integral equals to the norm of the set of eigenfunctions (or
normal mode functions) for a hcxmogeneous water with the depth of
"J+ f ,. and is determined by Reid (1958) as his equation (64). (He

used a notation instead of C" )
The normal functions of the lower layer for baroclinic

mode are also given approximately by:

(47)

Substitution of (47) into the left hand side of (44) yields:

C 1 (j$l I ] t Joe 1 2+ 6 1 tY i (48)
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The integral of the first three terms of the right hand side is the

same as the norm of the normal functions for the upper layer only

as treated by Reid (1958). The integral of the last term equals

to .
As in case of a homogeneous water, the quantity :

indicates the weight function of partitioning of the energy spectrum

among the six discrete modes ( 1 1 to 6). This function also

satisfies the condition that:

~ (50)
The weight functions for baroclinic mode are almost the same as those

determined by Reid (1958) for a homogeneous water with the

depth R,. The approximate formula (48) shows that C 1 - (2ý"v

STherefore, for the baroclinic mode, we have

I (51)

ThIs relation indicates that energy spectrum of an initial surface

displacement or of forcing functions is distributed for the most

part among three barotropic modes, because the weight functions for

baroclinic mode are less than S . Therefore, there is no' favor-

able condition for exciting internal waves in a range of wave lengths

of several thousands kilometers.
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7. Concluding remarks

Mathematical treatment of edge waves in a two-layered

rotating sea reveals to us two main features which may be important

to the application of the theory. One is that no instability occurs

to this system in a range of wave lengths of several to thous-Ms
kilometers. In a non-rotating system, shearing motion in a verti-

cally stratified layer becomes unstable in a certain range of wave

lengths as in Helmholz waves. Even in a rotating system, a mathe-
matical model of cyclone waves and a simplified theory of meander of

a wide ocean current predict that instability occurs in a two-layered

system of geostrophic currents. Therefore, in this model there is

no favorable range of wave lengths for which some disturbances may

excite large internal waves.

Another feature is that energy of an initially static mound

of water and of disturbing forces due to atmospheric pressure or

wind stresses is distributed for the most part among three baro-

tropic modes. This again indicates that internal waves are not

favorably excited by such disturbances with an order of dimension

corresponding to a range of wave lengths considered. This is in

accordance with a general theory developed by Veronis and Stoumel

(1958), who concluded that the ocean responds to variable winds

principally as a homogeneous body of water and for periods shorter

than several weeks. Therefore, possibility of favorable excitation

of internal waves in this system may be found outside a range of
wave lengths discussed here. In a range of shorter wave lengths,

however, the effect of Coriolis' force is negligible. In a range
of longer wave lengths, the effect of change of Coriolis' coefficient

may become important. In either range the present model is not
adequate.
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Appendix A

Strmzel (1953, 1958) discussed a perturbation problem for

a wide, geostrophic current V, in the upper layer of two-layered

ocean. He obtained a result that there is a narrow range of wave

numbers about I f/6 V, in which waves are unstable, in contrary

to the present work. Although he assumed that the perturbation is
uniform in x - direction (cross current direction), his model may

be considered as amodified use of the present theory.

It is assumed that the uniform geostrophic current flows

in the wedgeshaped upper layer, below which the motionless lower

layer extends infinitely downwards. (See the attached figure) The

SZ coordinate system is taken as the

same as in the text, but no coastal
V, ~boundary is needed in this problem

Equations of motion and continuity

for the upper layer axe the same as (1) and (2) of the text. The

assu-rption of no motion in the lower layer leads to:

-- I'- .(Al)

Substituting (4) and (5) into (2) and using (Al), we have :

ax (l (A2)

in which f, - -V , C, 2 ' -c and the suffix l

for S , • and V is omitted.

Assuming that • is independent on x and that k in the

coefficient of • in equation (A2) is constant, Stommel (1954,

1958) derived a cubic equation of Q by equating the coefficient
of • ~~~to zero. However, if ft is taken as truhtte

whole space, equation (A&) can be written as:

8 A3
1 '{ Xf 

4
W.



The normal mode of ý which is finite at x - 0 and oo cor-

responds to Wg, satisfying

*W,'+jjW1V - (2111j(M)

This equation can be transformed into

cu,3- +) -e Gil - V = 0 (A5)

where = - 4 as defined in the text.

By taking AJ, - )Y3 W, (A5) is changed into:

where 23f(a" ) +(A7)

when p< 3 , there are complex roots of (A6). However, as easily

seen, P ? 3 for all positive -&' . (The equality occurs for

k'-2 and n - 0). Therefore, in the present model there is no.

range of k in which waves are unstable.

When there is a geostrophic current in the lower layer as

in the model of the text, jC in equation (A5) should be changed into

(I+I-) J/ , in which F - -u /t, . Since (I+E)fV is always

positive as discussed in the text, the same reasoning as above is

valid and the waves are always stable.

It is noted that equation (A5) is reduced to the frequency

equation (30) of Reid's paper (1958), when W3 and jC are replaced

by -W/ý and 65 .• "' , respectively. Therefore, mathematical
features of the roots of (AS) are the same as those of the barotropic

mode discussed by him. Discussions on phase velocity and group

velocity for each of the three barotropic modes are also applicable

to the baroclinic mode, when the velocities are interpreted as those

referred to the coordinates moving with the flow in the upper layer

and the wave number k for the barotropic mode is replaced by$tON.



Appendix B

Equations (1) end (2) yields the equations of motion and continuity

for a mode s and order M such as
-A47 lJ,, -1 H1 it, (1

d ,,, (B3)

If n and I are replaced by a and pj respectively and all

quantities are changed into their complex conjugate, the following

equations are obtained:

..Avi*--It i -k (BS)

- (B6)d ~ APP-- . .r : - • , , - :

where the asterisk denotes the complex conjugate.

If equations (BI), (B2), (W3), (54), (B5) and (B6) are

multiplied respectively anblyh eslat r

summed up both for j - 1 and 2, the follouhg equation is obtained

-I +(,-vN,) 1 4- +.
"N7m. Ns+a--% -4-dt"r~~~a~emj

t ~~'J*f (B7u)V~p

in which equation (14) is used.

When this equation is integrated from 0 tooo with respect

to x, the right hand side of the relation vanishes because of

boundary conditions at x - 0 and at x - oc . Therefore, the

expression in brackets of the left hand side of (B7) must vanish



except fora, u nand p 1.

(0 l1m WLa * QP

The quantity C 'W)can be calculated by using the following rela-
tions and equations (4), (5) and (14).

1- (B9)

L 1M

The result is:C"• - ?)/t" ),;,I•, •r its,•. + +,•
24 Ozn,)~~ f -2)fifS t,1

2Il
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